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Almost all currently available methods are based on
iterative techniques using multigrid [7, 23], domain decom-We present a direct, adaptive solver for the Poisson equation

which can achieve any prescribed order of accuracy. It is based on position [11], or some other preconditioning strategy. Un-
a domain decomposition approach using local spectral approxima- fortunately, while multilevel iterations can achieve optimal
tion, as well as potential theory and the fast multipole method. In efficiency in theory, they require an appropriate hierarchy
two space dimensions, the algorithm requires O(NK) work, where

of coarse grids which are not provided in many practicalN is the number of discretization points and K is the desired order
situations. There has, however, been significant progressof accuracy. Q 1996 Academic Press, Inc.

made in this direction over the last few years. Good coars-
ening strategies can be found in [1, 27] for locally uniform

1. INTRODUCTION meshes based on adaptive mesh refinement [5, 6]. Other
useful schemes have been designed for composite overlap-

A variety of problems in computational physics require ping grids [4, 13], quad-trees [14, 25], and unstructured
the solution of the Poisson equation in situations where triangulations [3, 12, 21]. It should be noted that the origi-
the source distribution (the right-hand side) is locally nal paper [7] outlines a strategy for adaptive trees similar
smooth but has a complicated structure involving oscilla- to the one described below.
tions, internal layers, etc. Such problems require adaptive Leaving aside finite difference and finite element discret-
discretizations to which standard direct solvers [8] do izations, one could also solve (1) by direct evaluation of
not apply. the exact solution in the form of a volume integral

To simplify the ensuing discussion, we will restrict our
attention to the solution of the Poisson equation

u(x) 5
1

2f
E

R2 logux 2 yu f(y) dy. (2)
Du 5 f (1)

Such an approach has been developed for the case of un-in the plane, in the absence of physical boundaries. The
structured triangulations by Russo and Strain [31]. Theyimposition of boundary conditions in domains with compli-
have produced a robust second-order accurate solver,cated geometry can be achieved in a subsequent step by
based on applying the fast multipole method (FMM) [10,using standard potential theory. Once the solution u(x) to
17] directly to a quadrature approximation of the expres-(1) has been obtained, one need only solve an auxiliary
sion in (2). The implementation is nearly optimal in termsLaplace equation using a boundary integral method [16,
of asymptotic computational complexity, but it requires a29]. We refer the reader to [24] for a detailed description
significant amount of work per gridpoint.of such a solver. For our purposes here, it is sufficient to

In this paper, we present a kind of domain decomposi-note that the method of [24] uses the algorithm of [22] for
tion or spectral element method [9, 28], which is fast andevaluating the volume integral. The latter algorithm is fast,
direct and assumes only that the right-hand side is definedachieves second- or fourth-order accuracy, and allows for
on the leaf nodes of an adaptive quad-tree data structure.discontinuities in the right-hand side, but it relies on a
A related, but nonadaptive, method based on Fourier anal-uniform underlying mesh. We would like to allow more
ysis is described in [2]. We proceed by solving local Poissoncomplex volume discretizations.
problems on each subregion using a spectral method and
then coupling all the local solutions together, using poten-

* The authors were supported by the Applied Mathematical Sci- tial theory and the FMM. The advantages of this approach
ences Program of the U.S. Department of Energy under Contract

over applying the FMM to the volume integral (2) directlyDEFGO288ER25053, by the Office of Naval Research under Contract
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L.G. and by a Packard Foundation Fellowship to L.G. and second, the CPU requirements are dramatically dimin-
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Computing the solution to (3) is a nontrivial task, since
ui is weakly singular along the boundary of Di , where the
right-hand side is discontinuous. To overcome this diffi-
culty, we have developed a rather nonstandard ‘‘local
solver,’’ based on Chebyshev approximation. By way of
brief review, we note that the Chebyshev polynomial of
degree k on [21, 1] can be defined by the formula

Tk(cos u) 5 cos(ku), (4)

or by the recurrence

T0(x) 5 1

T1(x) 5 x
FIG. 1. The local solver. For each leaf node Di in a quad-tree refine-

ment of D, the local Poisson problem defined by Eq. (3) involves a Tk11(x) 5 2xTk(x) 2 Tk21(x) for k $ 1.
discontinuous right-hand side.

Given a smooth function f on [21, 1] 3 [21, 1], we defineished. In fact, the algorithm presented here requires, for
the Chebyshev expansion of f by16th order accuracy, about 500 floating point operations

per grid point. Problems with one million unknowns re-
quire between 10 and 20 min to solve on a SPARCstation 2. f(x1 , x2 ) 5 Oy

n50
Oy

m50
fn,m Tn(x1)Tm(x2 ),

2. MATHEMATICAL PRELIMINARIES
where

We assume that the source distribution f in (1) or (2) is
supported inside a square D, on which is superimposed a

fn,m 5
4

cncm
Ef

0
Ef

0
f(cos u1 , cos u2 ) cos(nu1 )

(5)
hierarchy of refined grids. Grid level 0 is defined to be
D itself, and grid level l 1 1 is obtained recursively by

cos(mu2 ) du1 du2 .subdividing each square at level l into four equal parts.
Using standard terminology, if d is a fixed square at level

In the preceding expression, c0 5 2 and cj 51 for j $ 1.l, the four squares at level l 1 1 obtained by its subdivision
See [15] for a more complete discussion.will be referred to as its children. In order to allow for

adaptivity, we do not use the same number of levels in all
Remark 2.1. The truncated Chebyshev expansion

regions of D. The leaf nodes on which the source distribu-
tion is assumed to be given will be denoted by Di .

Our assumption that f is locally smooth is taken to mean f(x1 , x2 ) P OK
n50

OK2n

m50
fn,m Tn(x1)Tm(x2 ) (6)

that it is accurately represented on each leaf node by a
local polynomial approximation. The basic strategy of our

is an approximation of order K 1 1, since it includes allalgorithm is to solve uncoupled Poisson problems on the
polynomials of degree less than or equal to K.leaf nodes and then to patch the solutions together analyti-

cally, using layer potentials.
Remark 2.2. It is possible to compute the coefficients

fn,m of the truncated Chebyshev expansion in O(K 2log K)2.1. The Local Solver
operations using the fast cosine transform (see, for exam-

Consider now an arbitrary leaf node Di in a given quad- ple, [9]).
tree refinement of D (Fig. 1). We define the local problem

LEMMA 2.1. Let Tn(x1)Tm(x2 ) be a polynomial of de-by the equation
gree n 1 m. Then there exists a polynomial Pn,m(x1 , x2 ) of
degree n 1 m 1 2 such that

Dui(x) 5 Hfi(x) if x [ Di

0 if x Ó Di
(3)

DPn,m(x1 , x2 ) 5 Tn(x1 )Tm(x2 ).
ui(x) 5 O(loguxu) as x R y,

Proof. Let I denote the indefinite integration op-
erator,where fi denotes the restriction of f to Di .
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theory [18, 20, 26] as a combination of single and doubleI f (x) 5 Ex

21
f(t) dt,

layer potentials,

and let D denote the differentiation operator. If n $ m,
uh

i (x) 5 E
Di

G(x, y)
us

i

n
(y) dty 1 E

Di

G
n

(x, y)us
i (y) dty,the following polynomial satisfies the desired conditions:

(9)
Pn,m(x1 , x2 ) 5 Om/2

k50
(21)k[I 2k12Tn ](x1 )[D2kTm ](x2 ). (7)

where G(x, y) 5 (1/2f) logux 2 yu , dty is an element of arc
length, and /n denotes the outward normal derivative.

The construction for n # m is analogous.
Remark 2.4. Note that the densities of the layer poten-

THEOREM 2.1. Let f : [21, 1] 3 [21, 1] R R be a polyno- tials, namely us
i /n and us

i , are smooth functions. In fact,
mial of degree K, by Theorem 2.1, they are polynomials of degree K 1 2.

DEFINITION 2.2. The concatenation of smooth local so-
f(x1 , x2 ) 5 OK

n50
OK2n

m50
fn,m Tn(x1 )Tm(x2 ), lutions is defined by

and let us(x) 5 Hus
i (x) if x [ Di

0 if x [ R2 2 D.
(10)

u(x1 , x2 ) 5 OK
n50

OK2n

m50
fn,m Pn,m(x1 , x2 ),

We may summarize the preceding discussion in the fol-
lowing theorem.

where Pn,m is defined in Lemma 2.1. Then u(x1 , x2 ) is a THEOREM 2.2. Let the function f(x) be supported in a
polynomial of degree K 1 2 satisfying Du 5 f on square domain D, on which is superimposed an adaptive
[21, 1] 3 [21, 1]. quadtree subdivision of space with leaf nodes Di for i 5

1, ..., M. Suppose, further, that on each square Di , f(x) isProof. The theorem follows immediately from
given by a polynomial of degree K. Then, for x [ R2, theLemma 2.1.
solution to the Poisson equation (1) is given by

Remark 2.3. The construction of the preceding theo-
rem need not depend on the precise dimensions of the
box, since the Chebyshev polynomials can be rescaled to u(x) 5 u s(x) 1 OM

i51
u h

i (x). (11)
any interval. For a given square Di , we will refer to the
(scaled) Chebyshev expansion coefficients of the local

2.2. Modifications of the Fast Multipole Methodsource distribution fi as h f i
n,m j.

In this section, we describe the changes which need toDEFINITION 2.1. For a given square Di , we define the
be made to the fast multipole method (FMM [10, 17] in(piecewise) smooth part of the local solution ui to be the
order to evaluate oM

i51 u h
i (x), but leave a detailed descrip-function

tion of that method to the original papers.
Consider a typical leaf node Di in the quad-tree refine-

ment of D. Then, outside the region covered by its neigh-us
i (x1 , x2 ) 5 HoK

n50 oK2n
m50 f i

n,m Pn,m(x1 , x2 ), if x [ Di

0, if x Ó Di

(8)
bors, the function u h

i can be accurately represented as a
multipole expansion about the box center, using only a
small number of terms. To obtain a formal expansion, wewhere, with a slight abuse of notation, Pn,m is the polyno-
first observe from Eq. (9) thatmial defined in Lemma 2.1 scaled to the proper dimensions

of Di .

While us
i satisfies the Poisson equation (3), it sustains u h

i (z) 5 Re S 1
2fi

E
Di

u s
i

n
(w) log(w 2 z) dtw

(12)jumps in both function value and normal derivative across
the boundary of Di . Fortunately, the difference

1
1

2fi
E

Di

us
i(w)

w 2 z
dwD ,

u h
i 5 ui 2 us

i

where we have equated the points x and y in R2 with the
points z and w in the complex plane. It is straightforwardhas a rather simple structure. It is harmonic both inside

and outside the square and is given by standard potential to prove the following result.
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LEMMA 2.2. Let Di be a square centered at the origin respectively. The individual boundary segments them-
selves will be denoted by D d

i . We can then defineof dimension L 3 L and let z 5 x 1 iy be a point in the
plane with uxu $ 3L/2 or uyu $ 3L/2 (or both). Then

s d
i (t) 5

us
i

n
(yd(t)), e d

i (t) 5 us
i (yd (t)), (17)uh

i (z) 5 Re Sa0 log z 2 Oy
l51

al

z lD , (13)

where
where

a0 5
1

2fi
E

Di

us
i

n
(w) dtw (14)

yN (t) 5 (t, t4 ), yS (t) 5 (t, t3 ), yE (t) 5 (t2 , t), yW (t) 5 (t1 , t).

and
Since all these functions are polynomials of degree K 1
2, we may write

al 5
1

2fi SEDi

w l

l
us

i

n
(w) dtw 1 E

Di

w l21us
i (w) dwD (15)

for l $ 1. The error in truncating the expansion after p s d
i (t) 5 OK12

k50
s d

i,k T̃k(t), e d
i (t) 5 OK12

k50
e d

i,k T̃k(t),
terms is given by

Ep 5 Uuh
i (z) 2 Re Sa0 log z 2 Op

l51

al

z lDU
(16)

where T̃k(t) is the Chebyshev polynomial scaled to the
proper dimensions of Di . But then u h

i in Eq. (9) can be
written in the form

# SA 1
B
uzuDSÏ2

3 Dp

,

where u h
i (x) 5 OK12

k50
(S N

k s N
i,k 1 S S

ks S
i,k 1 S E

k s E
i,k 1 S W

k s W
i,k )

(18)

A 5
1

2f
E

Di
Uus

i

n
(w)U dtw 1 OK12

k50
(D N

k e N
i,k 1 D S

ke S
i,k 1 DE

k e E
i,k 1 DW

k e W
i,k ),

B 5
1

2f
E

Di

uus
i(w)u dtw .

where

Since the single and double layer densities us
i /n and

us
i are polynomials of degree K 1 2, the multipole coeffi-

S d
k 5 S d

k(x) 5 E
Dd

i

G(x, yd(t))T̃k(t) dtcients in Eqs. (14) and (15) can be computed exactly. The
most important thing to note, however, is that after forming
the multipole expansions for all leaf nodes, the process of D d

k 5 D d
k(x) 5 E

Dd
i

G
n

(x, yd(t))T̃k(t) dt.

(1) merging expansions at coarser refinement levels,

(2) converting multipole expansions to local expan-
sions, Thus, for each target point of interest x, the function uh

i

can be evaluated using 8(K 1 3) operations, assuming that(3) shifting local expansions from parents to children
we have precomputed the coefficients hS d

k , Dd
k j.

is carried out just as in a standard implementation of
the FMM.

It remains only to say something about computing the 3. THE NUMERICAL METHOD
influence of a leaf node Di on itself and its neighbors,
corresponding to the ‘‘direct interaction’’ step in a standard We begin with some notation concerning the adaptive

data structure. We assume that we are given a square D,FMM. For this, we will require some additional notation.
Let Di 5 [t1 , t2 ] 3 [t3 , t4 ] and let d 5 N, S, E, or W refer which contains the support of the right-hand side f, as well

as a quadtree refinement of D which respects the conditionto the north, south, east, or west side of the boundary,
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leaf nodes which share a boundary segment live at most
one level apart).

Remark 3.1. In the preceding discussion, leaf nodes
have two characterizations, as squares Di and as tree ele-
ments Sl,k for some l and k. When it is clear from the
context, we will refer to the multipole and local expansions
for Di by Fi and Ci , respectively.

Remark 3.2. Note that the function oM
i51 u h

i (x) depends
only on the boundary values of u s

i and u s
i /n. Note also

that on the boundary of each leaf node Di , the exact
FIG. 2. Adaptive subdivision of a square domain D. In (a), all leaf solution is given by

nodes are visible and the neighbors of the square marked by an x are
indicated by shading. The elements of the interaction list are indicated
by an i or an i1, depending on whether they are at the same refinement uDi

(x) 5 u s
i(x) 1 OM

j51
u h

j (x).
level or at a coarser one. Note that some of the neighbors at the same
refinement level are further subdivided, resulting in a somewhat complex
local structure. In (b), the neighbors and interaction list of the square

Once the boundary values uDi
are known, the localmarked by an x are again indicated by shading or by the labels i and i1.

We have omitted the refinements of some of the members of the interac- Poisson problem
tion list in (b), since those refinements are of no consequence to the
marked square under consideration.

Dui(x) 5 fi (x) in Di (19)

ui(x) 5 uDi
(x) on Di (20)

that two leaf nodes in the tree which share a boundary
has a smooth solution which is, in fact, the restriction tosegment live at most one refinement level apart (Fig. 2).
Di of the desired solution u.

DEFINITION 3.1. (a) For each square S, the neighbors
ALGORITHM.consist of those squares at the same refinement level with

which it shares a boundary point, as well as leaf nodes at Initialization
coarser levels with which it shares a boundary point.

Comment (We assume we are given a square domain(b) For each square S, the interaction region consists
D 5 S0,0 , on which is superimposed a hierarchical quadtreeof the area covered by the neighbors of S’s parent, exclud-
structure. Internal nodes will be referred to as Sl,k , whileing the neighbors of S. The interaction list consists of those
leaf nodes will be referred to as Di for i 5 1, ..., M.)squares in the interaction region which are at the same

refinement level, as well as leaf nodes in the interaction (a) Choose order K of polynomial approximation on
list which are at coarser levels. each leaf node.

(b) Choose order p of multipole expansionsLetting M be the number of leaf nodes and K be the
desired order of accuracy, we construct a (scaled) K 3 K (p P log2 «, where « is the desired accuracy).
Chebyshev mesh on each leaf node Di for i 5 1, ..., M.

Step I. Solve local problems in free spaceThe total number of discretization points is given by N 5
do i 5 1, ..., MMK 2. We will also use the following definitions:

(a) for leaf node Di , compute the Chebyshev• S0,0 5 original domain D.
expansion of the right-hand side fi via eq. (5).

• Sl,k 5 kth square at refinement level l.
(b) for leaf node Di , evaluate u s

i and
u s

i

n
on the• Fl,k 5 multipole expansion describing the far field of

oj u h
j , where the index of summation runs over all leaf boundary via definition 2.1 and theorem 2.1.

nodes Dj contained within Sl,k .
(c) form the multipole expansion Fi(x) for

• Fl,k 5 local expansion describing the field oj u h
j , where u h

i (x) according to formulae (13), (14), (15).
the index of summation runs over all leaf nodes outside
the neighbors of Sl,k . end

Cost (Step (a) requires approximately 10MK 2 log KThe quadtree structure is obtained by dividing a square
subdomain Sl21, j into four smaller subdomains Sl,4 j1k , for operations, while (b) requires 8MK 3 operations. (c) re-

quires 8MKp operations.)k 5 0, 1, 2, 3 (subject to the constraint that two distinct
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Step II. Multipole sweep cost is accurate in the case of a uniform mesh and a good,
often pessimistic, approximation in more general settings.

Upward pass (Note, for example, that if a leaf node Di has subdivided
for all internal nodes Sl, j neighbors, more direct interactions will be needed to evalu-

form the multipole expansion Fl, j by merging the ate the field on the boundary of Di . This increase is offset
multipole expansions of its four children. by a decrease in the direct interactions needed by the

end neighboring, finer level leaf nodes themselves.)
Downward pass

In summary, the CPU requirements of the algorithm arefor all nodes Sl, j

approximatelyform the local expansion Cl, j by adding the local
expansion of its parent to the contributions from
the multipole expansions of all elements of its

N S10 log K 1 8K 1 2
p
K

1
27p2

K 2 1 2
p
K

1 24 1 K 2D.interaction list.
end

The cost of Step 4 could be reduced by the use of a moreCost (The upward pass requires approximately Mp 2

sophisticated local solver. There are direct methods requir-work, while the downward pass requires approximately
ing O(K 3 ) work per leaf node [15, 9] as well as a recently27Mp 2 work (see Remark 3.3 below).)
developed high order direct solver [32], which requires

Step III. Leaf node processing O(K 2 log K) work. Since we are primarily interested in
Comment (At this point, for each leaf node Di , Ci(x) 5 K # 16, we have chosen the simplest scheme, which re-

oj u h
j (x), where the index of summation runs over all leaf quires O(K 4 ) work per leaf node. For K . 16, we recom-

nodes Dj outside the neighbors of Di .) mend switching to one of these other methods, which
would bring the asymptotic CPU requirements to O(NK).do i 5 1, ..., M

for each boundary point of the K 3 K Chebyshev
4. NUMERICAL RESULTSmesh on Di ,

(a) evaluate the local expansion Ci(x) The algorithm described above has been implemented in
double precision using a combination of C11 and Fortran,(b) evaluate u h

j induced by each neigh-
C11 for the adaptive bookkeeping and Fortran for theboring leaf node Dj
basic numerical modules. In this section, we illustrate its(c) evaluate u h

i performance using a Sun SPARCstation 2 on a suit of
(d) add the values from (a), (b), (c) to the test problems.
local solution u s

i .
EXAMPLE 1 (A Gaussian distribution on a uniform

end grid). We first consider the equation
end

Du 5 (4002r2 2 800)e2400r2/2, (21)Comment (We have now computed the correct boundary
values uDi

on each leaf node.)
where r2 5 x 2 1 y 2, for which the exact solution is given by

Cost (Step (a) requires approximately 4MKp operations,
while (b) requires approximately 24MK 2 operations.

u 5 e2400r2/2. (22)(c) requires 2MK operations.)

Step IV. Solve local Dirichlet problems The source distribution is supported, with an exponentially
do i 5 1, ..., M small error, in the box [20.5, 0.5]2, which we use as our

(a) Solve the local problem (19), (20) with K th- computational domain D. In order to first study the rate
order spectral method. of convergence without the complications introduced by

end adaptivity, we decomposed D uniformly into leaf nodes.
Our results are summarized in Tables I and II, the firstCost (By precomputation of the LU factorization of the
corresponding to eighth-order accuracy (K 5 8) and theK 2 3 K 2 system matrix, the cost per leaf node is K 4 opera-
second to 16-order accuracy (K 5 16). In each table, thetions.)
first column indicates the number of refinement levels and
the second column indicates the total number of gridRemark 3.3. It is, in fact, somewhat difficult to estimate

the costs of Steps II and III precisely, since they depend points. Columns 3 and 4 show the relative error in the L2

norm of the computed solution, using p 5 21 or p 5 42on the actual structure of the adaptive quadtree. The stated
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TABLE I

Performance of the Eighth Order Method (K 5 8) for Example 1

CPU time
Relative error (seconds)

No. of
No. of levels grid points p 5 21 p 5 42 p 5 21 p 5 42

0 64 2.24 3 101 2.24 3 101 0.1 0.1
1 256 1.16 3 1021 1.16 3 1021 0.2 0.3
2 1024 5.40 3 1023 5.40 3 1023 0.7 1.0
3 4096 4.86 3 1025 4.86 3 1025 2.7 4.4
4 16384 1.79 3 1027 1.79 3 1027 10.5 18.4
5 65536 4.30 3 10210 3.14 3 10210 42.4 74.5
6 262144 1.86 3 10210 6.34 3 10213 171.1 301.2
7 1048576 1.51 3 10210 1.63 3 10215 687.2 1217.0

multipole moments, while columns 5 and 6 indicate the tolerance on each leaf node (Fig. 3). We achieve this by
examining the local Chebyshev coefficients of the right-amount of CPU time required.

For p 5 21, we see that the error is dominated by the hand side and subdividing those nodes on which the tail
of the series has not decayed sufficiently, according tomultipole approximation once the discretization error falls

below about 10210. For p 5 42, full double precision accu- the criterion
racy is achieved. We have also broken down the timings
for two representative calculations, to see how costly the OK

n50
u f i

n,K2n u , discretization tolerance. (24)
various steps of the algorithm are in actual practice (Table
III). Note that at K 5 16, even requiring 14-digit multipole
accuracy, the most expensive part of the algorithm is step 4. In Table IV, we show the discretization tolerance and the

multipole tolerance, as well as the number of grid pointsEXAMPLE 2 (Random distribution of Gaussian
and CPU times required by the eighth order and 16th-sources). We have selected for our second example a
order schemes. One can see that the eighth-order methoddistribution of Gaussian sources,
is more efficient if fewer than eight digits of accuracy are
required, but that the 16th-order method is preferable for

Du 5 o14
i51 e2gi r

2
i , (23) higher precision.

EXAMPLE 3 (Sharp transition layers). To test the algo-where r 2
i 5 (x 2 xi)2 1 (y 2 yi )2, the centers (xi , yi ) are

rithm on a source distribution with internal layers, we letrandomly located in the box [20.4, 0.4]2, and gi [ [1024,
16384]. The computational domain D is again the box
[20.5, 0.5]2. An adaptive discretization is obtained by re- g(n) 5 erf Ss

(n 1 1)
4 D1 erf Ss

(n 2 1)
4 D2 erf(sn)

quiring that the right-hand side be resolved to a specified

TABLE II

Performance of the Sixteenth Order Method (K 5 16) for Example 1

CPU time
Relative error (seconds)

No. of
No. of levels grid points p 5 21 p 5 42 p 5 21 p 5 42

0 256 2.31 2.31 2.6 2.7
1 1024 5.11 3 1024 5.11 3 1024 3.1 3.2
2 4096 7.86 3 1027 7.86 3 1027 5.3 5.6
3 16384 4.98 3 10210 4.71 3 10211 13.6 15.5
4 65536 5.39 3 10210 3.77 3 10215 47.7 55.9
5 262144 2.94 3 10210 3.24 3 10215 184.2 216.7
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FIG. 4. In the left-hand figure, an adaptive discretization of the func-FIG. 3. The left-hand figure shows a random distribution of Gaussian
tion defined in Example 3 is shown. The right-hand figure superimposessources and the superimposed adaptive quad-tree. On the right is a con-
a contour plot of the solution.tour plot of the solution.

known that any vector field u can be written as the sum
of two termsh(p) 5 erf Ss

(p 1 1)
8 D1 erf Ss

(p 2 1)
8 D

u 5 up 1 us , (25)
f(x, y) 5 g Sy 2 x

Ï2
D · h Sy 1 x

2 D .

where the irrotational part up has zero curl and the solenoi-
dal part us has zero divergence [19]. This Helmholtz decom-This function is approximately equal to 1 in the upper left-
position can be constructed explicitly in terms of u ashand rectangle visible in Fig. 4 and 21 in the lower right-

hand rectangle. We let s 5 256 so that the width of the
transition region is of the order s!gh ; 610 boxes are required up(x) 5 =

1
2f

E
R2 logux 2 yu= · u(y) dy

using K 5 8 to enforce a discretization tolerance of 1026

according to the local criterion (24). The corresponding us(x) 5 = 3 = 3
1

2f
E

R2 logux 2 yuu(y) dy.
number of points is 39,040 and the solver requires 45 s.
The relative error of the computed solution in the L2 norm
is 1028, two orders of magnitude smaller than the toler- One of the consequences of having a high-order, adap-
ance criterion. tive, and well-conditioned Poisson solver is that the projec-

tion of u onto divergence-free fields can be computed stablyEXAMPLE 4 (Discontinuous distributions). In Fig. 5,
and accurately. We present only a simple example in thewe show a rather complicated but rectilinear piecewise
present paper, for whichconstant distribution. Note that the smooth part of the

local solution u i
s is computed exactly on each leaf node

u 5 e2r2
(1 2 2x 2 2 y, x 2 2xy). (26)and that the evaluation of u on the boundary of each leaf

node in Step III is limited only by the multipole tolerance.
The computation is done on the square [24, 4]2 and theStep 4 of the algorithm, however, does not provide K th-
solution is plotted on [22, 2]2. A uniform refinement withorder accuracy, since the exact solution is no longer
16,384 points was used, requiring 10 s CPU time (Fig. 6).smooth. On the other hand, it is straightforward to modify

the algorithm so that full machine precision can be ob-
5. CONCLUSIONStained. Here, we use a nonadaptive refinement with 16 3

16 leaf nodes and K 5 8. There are 16,384 grid points and
We have developed a robust fast solver for the Poisson

the solver requires 10 s.
equation in free space which is adaptive, high-order accu-
rate, and direct. Our algorithm requires only that theEXAMPLE 5 (Helmholtz decomposition). It is well

TABLE III

Breakdown of Timings for Example 1 using 1024 Leaf Nodes

p K N Init. Step 1 Steps 2 & 3 Step 4 Misc (sec)

21 8 65536 0.20 5.21 24.34 8.49 3.18
42 16 262144 5.57 28.98 80.33 84.17 17.65
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TABLE IV

Performance of the Eighth and Sixteenth Order Methods in Example 2

K 5 8 K 5 16
Discretization Multipole

tolerance tolerance N CPU time N CPU time

1024 1024 13120 16.4 23296 32.3
1026 1026 31168 42.0 47872 64.7
1028 1028 67456 99.3 75520 103.2
10210 10210 146560 234.1 123136 173.9
10212 10212 355072 615.4 197632 283.5
10214 10214 866468 1648.9 301312 448.0

Note. N denotes the number of points, and CPU times are listed in seconds.

source distribution have bounded support and that it be
smooth on the scale of the leaf nodes of an adaptive quad-
tree data structure. The solution procedure is essentially
analytic, involving only two kinds of numerical approxi-
mation:

1. f is discretized on each leaf node as a high-order
Chebyshev expansion and

2. far field interactions are computed via multipole
expansions to within a user-specified tolerance of «.

FIG. 5. A piecewise constant source distribution (Example 4). The The extension of this algorithm to three dimensions is
left-hand figure shows the supports and values of five different patches. straightforward, although the number of operations per
The right-hand figure shows a contour plot of the solution.

gridpoint will grow due to the increase in work associated
with both the local solver and the FMM. Furthermore,
the algorithm can be extended to any problem where the
governing Green’s function is known, such as the Helm-
holtz equation, although the FMM required may differ [30].

The most salient feature of the present algorithm, how-
ever, is its speed. The 16th-order accurate implementation
requires about 500 floating point operations per gridpoint.
It is only a few times more expensive than a second-order
nonadaptive method based on Fourier analysis or cyclic
reduction, yet it can easily obtain machine precision for
both the computed solution and its partial derivatives.
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